Dynamic Programming 0/1 Knapsack Using C/C++
/* A Naive recursive implementation of 0-1 Knapsack problem using c*/
#include<stdio.h>
// A utility function that returns maximum of two integers
int max(int a, int b) { return (a > b)? a : b; }
// Returns the maximum value that can be put in a knapsack of capacity W
int knapSack(int W, int wt[], int val[], int n)
{
// Base Case
if (n == 0 || W == 0)
return 0;
// If weight of the nth item is more than Knapsack capacity W, then
// this item cannot be included in the optimal solution
if (wt[n-1] > W)
return knapSack(W, wt, val, n-1);
// Return the maximum of two cases:
// (1) nth item included
// (2) not included
else return max( val[n-1] + knapSack(W-wt[n-1], wt, val, n-1),
knapSack(W, wt, val, n-1)
);
}
// Driver program to test above function
int main()
{
int val[] = {60, 100, 120};
int wt[] = {10, 20, 30};
int W = 50;
int n = sizeof(val)/sizeof(val[0]);
printf("%d", knapSack(W, wt, val, n));
return 0;
}
OUTPUT:
220
/* A Naive recursive implementation of 0-1 Knapsack problem using c*/
#include<stdio.h>
// A utility function that returns maximum of two integers
int max(int a, int b) { return (a > b)? a : b; }
// Returns the maximum value that can be put in a knapsack of capacity W
int knapSack(int W, int wt[], int val[], int n)
{
// Base Case
if (n == 0 || W == 0)
return 0;
// If weight of the nth item is more than Knapsack capacity W, then
// this item cannot be included in the optimal solution
if (wt[n-1] > W)
return knapSack(W, wt, val, n-1);
// Return the maximum of two cases:
// (1) nth item included
// (2) not included
else return max( val[n-1] + knapSack(W-wt[n-1], wt, val, n-1),
knapSack(W, wt, val, n-1)
);
}
// Driver program to test above function
int main()
{
int val[] = {60, 100, 120};
int wt[] = {10, 20, 30};
int W = 50;
int n = sizeof(val)/sizeof(val[0]);
printf("%d", knapSack(W, wt, val, n));
return 0;
}
OUTPUT:
220
No comments:
Post a Comment