Heaps: Find the Running Median HackerRank Solution


Heaps: Find the Running Median HackerRank Solution
Source : https://www.hackerrank.com/challenges/ctci-find-the-running-median



Source : https://www.hackerrank.com/challenges/ctci-find-the-running-median


Solution


// Karthikalapati.blogspot.com
import java.util.Scanner;
import java.util.PriorityQueue;
import java.util.Collections;
// - We use 2 Heaps to keep track of median
// - We make sure that 1 of the following conditions is always true:
// 1) maxHeap.size() == minHeap.size()
// 2) maxHeap.size() - 1 = minHeap.size()
public class Solution {
private static PriorityQueue<Integer> maxHeap = new PriorityQueue(Collections.reverseOrder()); // keeps track of the SMALL numbers
private static PriorityQueue<Integer> minHeap = new PriorityQueue(); // keeps track of the LARGE numbers
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
int [] array = new int[n];
for (int i = 0; i < n; i++) {
array[i] = scan.nextInt();
}
scan.close();
medianTracker(array);
}
public static void medianTracker(int [] array) {
for (int i = 0; i < array.length; i++) {
addNumber(array[i]);
System.out.println(getMedian());
}
}
private static void addNumber(int n) {
if (maxHeap.isEmpty()) {
maxHeap.add(n);
} else if (maxHeap.size() == minHeap.size()) {
if (n < minHeap.peek()) {
maxHeap.add(n);
} else {
minHeap.add(n);
maxHeap.add(minHeap.remove());
}
} else if (maxHeap.size() > minHeap.size()) {
if (n > maxHeap.peek()) {
minHeap.add(n);
} else {
maxHeap.add(n);
minHeap.add(maxHeap.remove());
}
}
// maxHeap will never have fewer elements than minHeap
}
private static double getMedian() {
if (maxHeap.isEmpty()) {
return 0;
} else if (maxHeap.size() == minHeap.size()) {
return (maxHeap.peek() + minHeap.peek()) / 2.0;
} else { // maxHeap must have more elements than minHeap
return maxHeap.peek();
}
}
}

No comments:

Post a Comment