Day 6: The Central Limit Theorem II HackerRank Solution


Day 6: The Central Limit Theorem II HackerRank Solution
Source : https://www.hackerrank.com/challenges/s10-the-central-limit-theorem-2



Source : https://www.hackerrank.com/challenges/s10-the-central-limit-theorem-2


Solution


// Karthikalapati.blogspot.com
public class Solution {
public static void main(String[] args) {
double ticketsLeft = 250;
int n = 100;
double mean = 2.4;
double std = 2;
/* Formulas are from problem's tutorial */
double samplesMean = n * mean;
double samplesSTD = Math.sqrt(n) * std;
System.out.format("%.4f", cumulative(samplesMean, samplesSTD, ticketsLeft));
}
/* Calculates cumulative probability */
public static double cumulative(double mean, double std, double x) {
double parameter = (x - mean) / (std * Math.sqrt(2));
return (0.5) * (1 + erf(parameter));
}
/* Source: http://introcs.cs.princeton.edu/java/21function/ErrorFunction.java.html */
// fractional error in math formula less than 1.2 * 10 ^ -7.
// although subject to catastrophic cancellation when z in very close to 0
// from Chebyshev fitting formula for erf(z) from Numerical Recipes, 6.2
public static double erf(double z) {
double t = 1.0 / (1.0 + 0.5 * Math.abs(z));
// use Horner's method
double ans = 1 - t * Math.exp( -z*z - 1.26551223 +
t * ( 1.00002368 +
t * ( 0.37409196 +
t * ( 0.09678418 +
t * (-0.18628806 +
t * ( 0.27886807 +
t * (-1.13520398 +
t * ( 1.48851587 +
t * (-0.82215223 +
t * ( 0.17087277))))))))));
if (z >= 0) return ans;
else return -ans;
}
}

No comments:

Post a Comment